|
A uniform polyhedron compound is a polyhedral compound whose constituents are identical (although possibly enantiomorphous) uniform polyhedra, in an arrangement that is also uniform: the symmetry group of the compound acts transitively on the compound's vertices. The uniform polyhedron compounds were first enumerated by John Skilling in 1976, with a proof that the enumeration is complete. The following table lists them according to his numbering. |72 |48 |rotational freedom |''O''h |''S''4 |- |UC03 |snu |50px |6 |tetrahedra |24 |36 |24 | |''O''h |''D''2d |- |UC04 |so |50px |2 |tetrahedra |8 |12 |8 |regular |''O''h |''T''d |- |UC05 |ki |50px |5 |tetrahedra |20 |30 |20 |regular |''I'' |''T'' |- |UC06 |e |50px |10 |tetrahedra |40 |60 |20 |regular 2 constituent polyhedra incident on each vertex |''I''h |''T'' |- |UC07 |risdoh |50px |6 |cubes |(12+24) |72 |48 |rotational freedom |''O''h |''C''4h |- |UC08 |rah |50px |3 |cubes |(6+12) |36 |24 | |''O''h |''D''4h |- |UC09 |rhom |50px |5 |cubes |30 |60 |20 |regular 2 constituent polyhedra incident on each vertex |''I''h |''T''h |- |UC10 |dissit |50px |4 |octahedra |(8+24) |48 |24 |rotational freedom |''T''h |''S''6 |- |UC11 |daso |50px |8 |octahedra |(16+48) |96 |48 |rotational freedom |''O''h |''S''6 |- |UC12 |sno |50px |4 |octahedra |(8+24) |48 |24 | |''O''h |''D''3d |- |UC13 |addasi |50px |20 |octahedra |(40+120) |240 |120 |rotational freedom |''I''h |''S''6 |- |UC14 |dasi |50px |20 |octahedra |(40+120) |240 |60 |2 constituent polyhedra incident on each vertex |''I''h |''S''6 |- |UC15 |gissi |50px |10 |octahedra |(20+60) |120 |60 | |''I''h |''D''3d |- |UC16 |si |50px |10 |octahedra |(20+60) |120 |60 | |''I''h |''D''3d |- |UC17 |se |50px |5 |octahedra |40 |60 |30 |regular |''I''h |''T''h |- |UC18 |hirki |50px |5 |tetrahemihexahedra |20 15 |60 |30 | |''I'' |''T'' |- |UC19 |sapisseri |50px |20 |tetrahemihexahedra |(20+60) 60 |240 |60 |2 constituent polyhedra incident on each vertex |''I'' |''C''3 |- |UC20 | - |50px |2''n'' (''n''>0) |''p''/''q''-gonal prisms |4''n'' 2''np'' |6''np'' |4''np'' |rotational freedom gcd(''p'',''q'')=1, ''p''/''q''>2 |''D''''np''h |''C''''p''h |- |UC21 | - |50px |''n'' (''n''>1) |''p''/''q''-gonal prisms |2''n'' ''np'' |3''np'' |2''np'' |gcd(''p'',''q'')=1, ''p''/''q''>2 |''D''''np''h |''D''''p''h |- |UC22 | - |50px |2''n'' (''n''>0) |''p''/''q''-gonal antiprisms (tetrahedra if ''p''/''q''=2) (''q'' odd) |4''n'' (unless ''p''/''q''=2) 4''np'' |8''np'' |4''np'' |rotational freedom gcd(''p'',''q'')=1, ''p''/''q''>3/2 |''D''''np''d (if ''n'' odd) ''D''''np''h (if ''n'' even) |''S''2''p'' |- |UC23 | - |50px |''n'' (''n''>1) |''p''/''q''-gonal antiprisms (tetrahedra if ''p''/''q''=2) (''q'' odd) |2''n'' (unless ''p''/''q''=2) 2''np'' |4''np'' |2''np'' |gcd(''p'',''q'')=1, ''p''/''q''>3/2 |''D''''np''d (if ''n'' odd) ''D''''np''h (if ''n'' even) |''D''''p''d |- |UC24 | - |50px |2''n'' (''n''>0) |''p''/''q''-gonal antiprisms (''q'' even) |4''n'' 4''np'' |8''np'' |4''np'' |rotational freedom gcd(''p'',''q'')=1, ''p''/''q''>3/2 |''D''''np''h |''C''''p''h |- |UC25 | - |50px |''n'' (''n''>1) |''p''/''q''-gonal antiprisms (''q'' even) |2''n'' 2''np'' |4''np'' |2''np'' |gcd(''p'',''q'')=1, ''p''/''q''>3/2 |''D''''np''h |''D''''p''h |- |UC26 |gadsid |50px |12 |pentagonal antiprisms |120 24 |240 |120 |rotational freedom |''I''h |''S''10 |- |UC27 |gassid |50px |6 |pentagonal antiprisms |60 12 |120 |60 | |''I''h |''D''5d |- |UC28 |gidasid |50px |12 |pentagrammic crossed antiprisms |120 24 |240 |120 |rotational freedom |''I''h |''S''10 |- |UC29 |gissed |50px |6 |pentagrammic crossed antiprisms |60 12 |120 |60 | |''I''h |''D''5d |- |UC30 |ro |50px |4 |triangular prisms |8 12 |36 |24 | |''O'' |''D''3 |- |UC31 |dro |50px |8 |triangular prisms |16 24 |72 |48 | |''O''h |''D''3 |- |UC32 |kri |50px |10 |triangular prisms |20 30 |90 |60 | |''I'' |''D''3 |- |UC33 |dri |50px |20 |triangular prisms |40 60 |180 |60 |2 constituent polyhedra incident on each vertex |''I''h |''D''3 |- |UC34 |red |50px |6 |pentagonal prisms |30 12 |90 |60 | |''I'' |''D''5 |- |UC35 |dird |50px |12 |pentagonal prisms |60 24 |180 |60 |2 constituent polyhedra incident on each vertex |''I''h |''D''5 |- |UC36 |gikrid |50px |6 |pentagrammic prisms |30 12 |90 |60 | |''I'' |''D''5 |- |UC37 |giddird |50px |12 |pentagrammic prisms |60 24 |180 |60 |2 constituent polyhedra incident on each vertex |''I''h |''D''5 |- |UC38 |griso |50px |4 |hexagonal prisms |24 8 |72 |48 | |''O''h |''D''3d |- |UC39 |rosi |50px |10 |hexagonal prisms |60 20 |180 |120 | |''I''h |''D''3d |- |UC40 |rassid |50px |6 |decagonal prisms |60 12 |180 |120 | |''I''h |''D''5d |- |UC41 |grassid |50px |6 |decagrammic prisms |60 12 |180 |120 | |''I''h |''D''5d |- |UC42 |gassic |50px |3 |square antiprisms |24 6 |48 |24 | |''O'' |''D''4 |- |UC43 |gidsac |50px |6 |square antiprisms |48 12 |96 |48 | |''O''h |''D''4 |- |UC44 |sassid |50px |6 |pentagrammic antiprisms |60 12 |120 |60 | |''I'' |''D''5 |- |UC45 |sadsid |50px |12 |pentagrammic antiprisms |120 24 |240 |120 | |''I''h |''D''5 |- |UC46 |siddo |50px |2 |icosahedra |(16+24) |60 |24 | |''O''h |''T''h |- |UC47 |sne |50px |5 |icosahedra |(40+60) |150 |60 | |''I''h |''T''h |- |UC48 |presipsido |50px |2 |great dodecahedra |24 |60 |24 | |''O''h |''T''h |- |UC49 |presipsi |50px |5 |great dodecahedra |60 |150 |60 | |''I''h |''T''h |- |UC50 |passipsido |50px |2 |small stellated dodecahedra |24 |60 |24 | |''O''h |''T''h |- |UC51 |passipsi |50px |5 |small stellated dodecahedra |60 |150 |60 | |''I''h |''T''h |- |UC52 |sirsido |50px |2 |great icosahedra |(16+24) |60 |24 | |''O''h |''T''h |- |UC53 |sirsei |50px |5 |great icosahedra |(40+60) |150 |60 | |''I''h |''T''h |- |UC54 |tisso |50px |2 |truncated tetrahedra |8 8 |36 |24 | |''O''h |''T''d |- |UC55 |taki |50px |5 |truncated tetrahedra |20 20 |90 |60 | |''I'' |''T'' |- |UC56 |te |50px |10 |truncated tetrahedra |40 40 |180 |120 | |''I''h |''T'' |- |UC57 |tar |50px |5 |truncated cubes |40 30 |180 |120 | |''I''h |''T''h |- |UC58 |quitar |50px |5 |stellated truncated hexahedra |40 30 |180 |120 | |''I''h |''T''h |- |UC59 |arie |50px |5 |cuboctahedra |40 30 |120 |60 | |''I''h |''T''h |- |UC60 |gari |50px |5 |cubohemioctahedra |30 20 |120 |60 | |''I''h |''T''h |- |UC61 |iddei |50px |5 |octahemioctahedra |40 20 |120 |60 | |''I''h |''T''h |- |UC62 |rasseri |50px |5 |rhombicuboctahedra |40 (30+60) |240 |120 | |''I''h |''T''h |- |UC63 |rasher |50px |5 |small rhombihexahedra |60 30 |240 |120 | |''I''h |''T''h |- |UC64 |rahrie |50px |5 |small cubicuboctahedra |40 30 30 |240 |120 | |''I''h |''T''h |- |UC65 |raquahri |50px |5 |great cubicuboctahedra |40 30 30 |240 |120 | |''I''h |''T''h |- |UC66 |rasquahr |50px |5 |great rhombihexahedra |60 30 |240 |120 | |''I''h |''T''h |- |UC67 |rosaqri |50px |5 |nonconvex great rhombicuboctahedra |40 (30+60) |240 |120 | |''I''h |''T''h |- |UC68 |disco |50px |2 |snub cubes |(16+48) 12 |120 |48 | |''O''h |''O'' |- |UC69 |dissid |50px |2 |snub dodecahedra |(40+120) 24 |300 |120 | |''I''h |''I'' |- |UC70 |giddasid |50px |2 |great snub icosidodecahedra |(40+120) 24 |300 |120 | |''I''h |''I'' |- |UC71 |gidsid |50px |2 |great inverted snub icosidodecahedra |(40+120) 24 |300 |120 | |''I''h |''I'' |- |UC72 |gidrissid |50px |2 |great retrosnub icosidodecahedra |(40+120) 24 |300 |120 | |''I''h |''I'' |- |UC73 |disdid |50px |2 |snub dodecadodecahedra |120 24 24 |300 |120 | |''I''h |''I'' |- |UC74 |idisdid |50px |2 |inverted snub dodecadodecahedra |120 24 24 |300 |120 | |''I''h |''I'' |- |UC75 |desided |50px |2 |snub icosidodecadodecahedra |(40+120) 24 24 |360 |120 | |''I''h |''I'' |} == References == *. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Uniform polyhedron compound」の詳細全文を読む スポンサード リンク
|